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1 Introduction

Inequality has been consistently rising over the past 40 years in the US [1].

Its destabilizing forces and negative impact on economic growth have mo-

tivated academics and policy makers to address the roots of its persistence

[2, 3]. Policy makers and the economics literature has mostly focused on the

economic forces behind inequality such as market imperfections, tax policy or

monopoly rents. However, there is increasing recognition that the roots of in-

equality trace back to social structures and how they interact with economic

institutions [4]. Segregation or status homophily in network is believed to be

main social driver behind inequality [4–8]. The link between social network

homophily and inequality is based on unequal access to information. In basic

terms, sorting in social networks by status and access to economic informa-
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tion leads to concentration of opportunities in a small part of the society,

widening existing gaps over time.

The unequal diffusion of resources or opportunities is the basis of several

studies which have provided a theoretical account of how small differences in

individual advantage can translate into large and persistent differences over

time [5, 6, 9]. The unequal diffusion is an informational account of network

effects on inequality and occurs when valuable information is generated by

different people at different times and the network exhibits three character-

istics 1. Information diffuses across network ties, 2. One group generates the

information or opportunities at a higher rate, 3. The network is homophilous

in the group attribute. These three conditions make the networks of the ad-

vantaged group richer in resources, a phenomenon referred to as “inequality

in social capital” [6]. Homophily is the main driver of the differential ac-

cess to information and it implies that opportunities remain exclusive to one

group, exacerbating existing differences over time.

Given the significant implications of networks in exacerbating inequal-

ities, it is important to go beyond the general theoretical framework and

determine the process in detail. Only then we can prescribe interventions to

combat the forces that regenerate inequality. For example, a simple struc-

tural explanation based on information diffusion does not lead to larger than

initial levels of inequality. Figure 1 shows the results of a simple simula-

tion that confirms this point in a network with two disconnected circular

lattices, the most extreme case of homophily. In each round, each node in

the network independently generates valuable information with fixed proba-

bility and passes it along to its neighbors. The network has two disconnected

components, each representing a group with fixed probabilities PH and PL,

akin to status. Access to the information increases a node’s utility by a unit
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Figure 1: Diffusion in homophilous networks does not necessarily

widen inter-group difference. Two circular lattices comprising the full

(left). Nodes with the same color, a lattice, all have the same probability

of generating valuable information in each round. One group has higher

probability than the other. Lack of cross-group connections implies extreme

homophily. The ratio of group utilities after accounting for one-hop diffusion

for various levels of initial differences (right). Estimates are from 20 simula-

tions each with 10,000 rounds. 95% confidence intervals are too small to be

visible.

in each round. If we denote the total utility of all nodes in each group after

10000 rounds by UH and UL, then the ratio UH

UL
signifies the level of inter-

group difference accounting for the network effects. This ratio is compared

against the initial inter-group difference PH

PL
in figure 1b, which indicate that

the diffusion in the network actually reduces the inter-group difference by

about 54% from the initial exogenous differences when PH

PL
= 4.

The problem with this simple approach is that it is purely structural and

ignores the fact that inequality arises from the incentive structure of processes

that occur in the network and that inequality is durable because it’s indeed

the equilibrium state of that process [10]. In other words, individuals in
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a social network are not myopic, instead they strategically form links and

decide who to cooperate with. Our measures of social capital, in particular

those capturing information or favor exchange capital [11], mostly focus on

the network structure, and ignore its interaction with strategic behavior and

human capital. But in reality, it is possible that the same expansive network

structure for the poor does not provide the same informational benefits as

it does for the rich, despite predicting similar level of informational social

capital. Thus, it is imperative to account for the nuanced processes that

occur within the network and lead to unequal access to valuable resources.

Another problem with the simple structural account above is the assump-

tion that the valuable resource is non-rivalrous and individuals don’t compete

for accessing it. However in reality, many resources shared in social networks,

such as employment information or rations or new business innovation oppor-

tunities, are rivalrous (their utility goes down as more people share it). This

rivalry introduces strategic behavior in resource sharing because sharing will

reduce own utility but might encourage anticipated reciprocity with contacts

that improves utility in the future. Thus if an individual believes that the

future gains it receives from its contacts do not compensate for the losses

it incurs currently by sharing the valuable resources, then it might decide

to withhold the resource from its contacts. This sort of strategic behavior

resembles the conditionally cooperative behavior that has been illustrated in

lab experiments [12]: people cooperate if they know others will also cooper-

ate. This is very relevant in the case of inequality in endowments since if high

type players anticipate their low type contacts cannot cooperate, they will

in turn reduce their cooperation. Beyond the effects of rivalry on individ-

ual decision making, its macro effects at the group level outcomes are more

intriguing. Does rivalry affect different groups differently? In this paper,
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we attempt to study information sharing processes in networks pertaining to

rival resources and its implications on inequality.

This type of rivalry in resources and its effect on cooperation has been

studied before. It is usually introduced by changing the number of indi-

viduals who compete for the same fixed resources. For example when the

rivalrous resource is employment information, Beaman finds that refugees

who get resettled in locations with a larger community tend to have worse

employment outcomes and wages because a larger pool of refugees will com-

pete for the same fixed employment opportunities. Similarly in the context

of cooperation and information sharing, there is evidence of crowding effects

in public good games. Increasing the number of players sharing the same ri-

valrous common good decreases individual contributions and leads to worse

welfare outcomes [14]. Similar patterns have been reported when individu-

als share valuable information with low-degree contacts fearing that sharing

with high-degree contacts might lead to over-crowding on the rivalrous re-

source [15]. A similar force affects the choice of migration as migrant move to

places where their contacts don’t have too many friends they have to compete

with [16]. Our work was specifically inspired by the derivation of pairwise

stability in job contact networks which showed the positive correlation be-

tween employment outcome and the number of contacts, due to increasing

information sources, but negative correlation with number of two-links-ways

contacts, due to increased competition [17]. Similar to [17], we derive the

pairwise stable subgame perfect equilibrium in our (rivalrous) information

sharing model. But in addition we examine the inequality implications of ri-

valry by introducing heterogeneous agents which are present simultaneously

in the network and adapt different strategies.

The effect of heterogeneity among agents on individual decisions and total
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welfare has also been studied. There have been mixed results mainly due to

different setups. Some evidence suggests that heterogeneity does not affect

cooperation rate in public good games and could sometimes even increase

it [18–20]. In a context with collective risk such as climate change, Wang

et al. show that heterogeneity leads to higher cooperation because the stakes

are higher for richer agents and their cooperation incentivizes poorer agents

to also cooperate [21]. The main question in all these studies is stated in

terms of cooperation rate in non-rivalrous game with heterogeneity and the

inequality implications are not considered. Our work examines the effects of

agent heterogeneity and rivalry simultaneously in a network game and while

our main goal concerns the inequality implications, we also derive how these

factors affect the cooperation.

In this paper, we develop a model that introduces a strategic sharing

process among agents with heterogeneous levels of initial endowments in a

network where the resources are rivalrous. The agents play a repeated game

with their neighbors and in each round if they receive the rivalrous resource,

they decide whether to share it with their contacts or not. If the hetero-

geneity is observable, then in equilibrium the agents will follow a conditional

cooperation strategy: they will share the resource, if they know their contact

will reciprocate in the future. We show that if the initial differences are large

enough, the low type has no incentive to share information with their contact

whereas the high type will, essentially leading to homophily in type. These

micro-scale decisions made by individual have macro-scale implication at the

group level, such that they will exacerbate inter-group differences if the ini-

tial differences are large enough. In terms of theoretical contributions, this

simple model brings to light the importance of network processes involving

complex decisions and the interaction of social capital with human capital in
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the study of inequality.

Furthermore, we implement a randomized multi-player online lab experi-

ment closely resembling the model to validate its theoretical prediction. The

advent of crowd-sourcing platforms such as Amazon Mechanical Turk have

enabled researchers to develop and test their hypothesis in large-scale on-

line lab experiment [22�24]. We conducted our experiment similar to these

past works by recruiting participants from Amazon Mechanical Turk, and

randomly assigning them to a binary type and a position in a homophilous

network. Multiple participants played a game simultaneously over multiple

rounds and made decisions whether to share rivalrous monetary rewards with

each other. We �nd strong evidence of conditional cooperation as the low

type cooperates at a much lower rate than the high type. The adoption of

di�erent strategies employed by di�erent groups leads the high type to take a

larger share of the rivalrous resources than expected by its initial endowment.

2 Model

We study a network process that exacerbates inter-group di�erences beyond

what's expected by exogenous variation in individual ability. Our setup con-

siders a game in which a rivalrous resource repeatedly di�uses in the network,

access to which increases one's utility.

2.1 Game Setup

The game has in�nite number of rounds with discount factorc. In each

round, there exists a rivalrous resource with total value of 1 and all players

that have access to the resource will equally share its utility. There are two

types of players: there arenH agents of high type andnL agents of low
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type. There are more low type than high type agents:nL > n H . In each

round, exactly one player of each type receives the resource with uniform

within-type probability. A high type player will receive the resource with

probability pH = 1
nH

while a low type player will receive it with probability

pL = 1
nL

. Given that there are more low type than high type agents, a high

type agent is more likely to independently receive the resource:pH > p L .

If an agent receives the resource, it has the option to share it with any of

its network contacts. Since the resource is rivalrous, sharing it will reduce

potential utility from the current round, but the agent still has incentive to

share if it believes the contact has a high enough probability to receive the

resource in the future and reciprocate. The combined strategy of all players

leads to an undirected network structure that is endogenous to the game. A

link appears in the network when both players' strategies are to share with

each other. In the following we assume that each player can have at most a

degree ofd.

2.2 Pairwise Nash Stable Network

We will now derive the subgame perfect equilibrium (SPE) based on grim

trigger strategies on each agent. The outcome will e�ectively describe a

pairwise Nash stable network [25, 26] where the existence of links indicate

sharing by both agents and their absence indicates no sharing by either. For

simplicity, we assume only ties within the same type are possible, hence the

network will be maximally homophilous. After describing the SPE, we will

argue that the same conclusions holds if we were to allow cross-type edges as

well. Furthermore, we assumenL c and nH c are not integers to avoid a few

uninteresting edge cases that are easy to solve for but greatly expand the

set of possibilities to enumerate. We will brie�y remark how the equilibrium
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looks like when these conditions are not true. In the following, we denote

the equilibrium degree of each player byd�
H and d�

L for either type.

Theorem 2.1. AssumingnL c and nH c are not integers, agents employ grim

trigger strategies and only within-group sharing is possible, then

1. if nL > d+1
c� 1 andnH < 1

c� 1 , then d�
H = d andd�

L = 0 in the pairwise Nash

stable network. A circular lattice within each type is such a network.

2. if nL > d+1
c� 1 and nH > 1

c� 1 , then d�
H = d�

L = 0 in the pairwise Nash

stable network.

3. if 1
c� 1 < n L < d+1

c� 1 and nH > 1
c� 1 , then either d�

H = d�
L = 0 or d�

H =

d�
L = d in the pairwise Nash stable network.

4. if 1
c� 1 < n L < d+1

c� 1 and nH < 1
c� 1 , then d�

H = d�
L = d in the pairwise

Nash stable network.

5. if nL < 1
c� 1 , then d�

H = d�
L = d in the pairwise Nash stable network.

Proof. The grim trigger strategy of each player is a binary vector correspond-

ing to sharing decisions with all other players if having received the resource.

Since players are exchangeable, we can simplify the notation and express the

strategy of each player as the number of other players it is sharing with:dH

and dL for either type. To derive SPE, we express the expected utility of a

player from either type starting from the current round if the player has re-

ceived the resource (the player does not take any action if it does not receive

the resource).

UH (dH ; dL ) =
1

dH + dL + 2
+

1X

i =1

1
ci

1
dH + dL + 2

dH + 1
nH

(1)

=
1

dH + dL + 2
(1 +

dH + 1
nH (c � 1)

)

UL (dH ; dL ) =
1

dH + dL + 2
(1 +

dL + 1
nL (c � 1)

)
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The term 1
dH + dL +2 in equation 1 corresponds to utility from the shared re-

source in a round and the constant2 refers to the original receivers of the

resource, one from either type. The termdH +1
nH

in equation 1 denotes the

probability of receiving the resource in future rounds by either the player

itself or one of its neighbors. In SPE, each player maximizes utility starting

in each round conditioned on receiving the resource:

d�
H = arg max

dH 2f 0;1;:::;dg

1
dH + d�

L + 2
(1 +

dH + 1
nH (c � 1)

)

d�
L = arg max

dL 2f 0;1;:::;dg

1
d�

H + dL + 2
(1 +

dL + 1
nL (c � 1)

)

The marginal utilities are:

u0
H (dH ) =

d�
L � nH (c � 1) + 1

nH (c � 1)(dH + d�
L + 2) 2

u0
L (dL ) =

d�
H � nL (c � 1) + 1

nL (c � 1)(d�
H + dL + 2) 2

Depending on the sign of the numerator in the marginal utilities, we charac-

terize the Nash stable network with di�erent cases:

1. if nL > d+1
c� 1 then u0

L (:) < 0 for any value of d�
H . Thus, the optimal

choice for dL is the lower corner point: d�
L = 0. If nH < 1

c� 1 , then

u0
H (:) > 0 and the optimal choice fordH is the upper corner point:

d�
H = d.

2. if nL > d+1
c� 1 and nH > 1

c� 1 , we haved�
L = 0 from the previous case.

But now u0
H (:) < 0, thus the optimal choice fordH is the lower corner

point: d�
H = 0.

3. if 1
c� 1 < n L < d+1

c� 1 and nH > 1
c� 1 , then u0

L (:) < 0 if d�
H = 0, hence

d�
L = 0. Similarly, u0

H (:) < 0 if d�
L = 0, henced�

H = 0. So d�
L = d�

H = 0
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is one SPE, but there is another possible SPE.u0
L (:) > 0 if d�

H = d,

henced�
L = d and similarly d�

H = d if d�
L = d. Sod�

L = d�
H = d is another

SPE. It is easy to see that mid-values for eitherd�
H or d�

L cannot be

SPE, because we have assumednL c and nH c are not integers, so the

marginal utilities cannot be zero requiring the optimal choices to be

corner points.

4. if 1
c� 1 < n L < d+1

c� 1 and nH < 1
c� 1 , then u0

H (:) > 0 and the optimal

choice fordH is the upper corner point: d�
H = d. Given d�

H = d, then

u0
L (:) > 0 and d�

L = d.

5. if nL < 1
c� 1 , then u0

L (:) > 0 and subsequentlyu0
L (:) > 0 sincenH < n L .

Thus, d�
H = d�

L = d.

All equilibrium choices above have positive or negative marginal utility at

the equilibrium depending on the corner point they occur in. Thus adding

or severing links only reduce utility, which implies the solutions concepts

above are also pairwise stable. Therefore, all equilibrium solutions above

correspond to pairwise Nash stable networks.

Remark 2.1.1. As mentioned earlier, allowing fornL c or nH c to be integers

do not lead to interesting predictions, but greatly expand the possible cases.

For example, if we allownH c to be an integer, then in addition to cases

(1) and (2) in theorem 2.1, we will have yet another case as following: if

nL > d+1
c� 1 and nH = 1

c� 1 , then d�
L = 0 but now d�

H 2 f 0; 1; :::; dg since the

high type player will always have zero marginal utility regardless of its choice.

These edge cases are not interesting and we don't explore them further.

Corollary 2.1.1. If the game allows for cross-type edges, it is easy to see that

the network formation would exactly follow theorem 2.1. Because a high type
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player has more incentive to share with another high type than a low type.

Thus whend�
H > 0 in theorem 2.1, the connections will all be to the high

type and whend�
H = 0 there won't be any connection to the low type either.

Since the high type does not share with the low type, a low type player will

not share with the high type either resulting in two disconnected components

in equilibrium even if cross-type edges were possible.

Corollary 2.1.1 states that no sharing will occur from the high type to

the low type. The conditional cooperation argument [12], which is supported

in lab experiments [27], provides a mechanism behind this result. A high

type player anticipates that a low type cannot su�ciently reciprocate in the

future, thus it reduces its cooperation with the low type.

Corollary 2.1.2. If nL > d+1
c� 1 and nH < 1

c� 1 , then the expected utility of

high type in each round isE[u�
H;r ] = d+1

(d+2) nH
. The total share of the high type

as a group from the rivalrous resource will beU�
H = d+1

d+2 .

If the rivalrous resource was shared equally or there was no network,

then we would expectE[uH;r ] = 1
2nH

and the total share of high type to be

UH = 1
2 . Comparing this equality baseline versus the Nash stable equilibrium

outcome from corollary 2.1.2, we conclude thatif there is su�ciently high

rivalry among the low type and su�ciently low rivalry among the high type,

the intergroup di�erences will be exacerbated in the network game. The same

conclusion would hold even if cross-type edges were possible.

In summary, the exogenous variation in the level of access to a rivalrous

resource leads to di�erent strategies adopted by the low and high types such

that information sharing only occurs among the high type. This results from

large di�erences in future prospects of network bene�ts between the low and

high type. The macro implication of the adopted strategies is that the high

12



type as a group will receive a larger share of the common resource than

expected simply by the exogenous di�erences.

3 Experimental Design

We now discuss a randomized experiment we developed using the Empirica

platform [28] to test the predictions of our model in a multi-player online

game. The goal here is not to exactly replicate the model predictions above

as satisfying the assumptions of theorem 2.1 is very challenging (e.g. it

will require a large low type population and even if so not all players will be

strategic). Rather, our goal is to experimentally verify that high type players

cooperate at a higher rate than low type players and as a result collectively

receive a larger share of the common resource than expected simply by their

exogenous advantage over the low type players.

In this game, players are recruited and randomly assigned to either high or

low type and placed into di�erent positions in a �xed network. The network

is homophilous by type. The game has multiple rounds and in each round

one player from each type receives valuable information about a rivalrous

resource, in this case the location of a gold mine on a map, and decides

whether they want to share this information with their neighbors in the

network. Because there are less high type than low type players, a high type

player receives the information about the location of the gold mine more often

than a low type player. Players try to maximize their reward by �nding and

collecting the gold over all rounds as it translates to their �nal compensation

in dollars. The gold mine is a rivalrous resource, as sharing it with others

reduces one's reward in the current round, but sharing might still be a good

idea for potential reciprocated bene�ts in the future.
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3.1 Status Structure and Randomized Resource Alloca-

tion

Each game has 9 players, 3 of which are randomly selected to be of high

status (type) and the remaining 6 will become the low status (type). In

each round, the game reveals the location of the gold mine to one randomly

selected player from each type. The game instruction ensures players are

aware of the status structure and states that the high type players receive

the location of the gold on average in twice as many rounds as the low type

players. The instructions is purposefully vague on the exact process and

it could be interpreted as independent gold assignment in each round, but

to ensure a level of fairness so that players within each group potentially

receive equal payo�s, players within each group receive the location of the

gold in equal number of rounds and the game randomly shu�es the order

they receive it.

3.2 Reward Structure

The game needs to repeat over many rounds for player strategies to resemble

an equilibrium state. However, we are limited by the time each game can take

and use 12 rounds since it also ensures high and low type players each receive

the gold 4 and 2 times respectively. A gold mine in each round has $2.4 total

value which will be distributed equally among all players digging it. For

example, if none of the players to whom the gold is revealed originally share

the information with their contacts, each will receive $1.2 in that round.

If each of them shares it with one neighbor, then each of the four players

digging will receive $0.60.
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Figure 2: The structure of the network. Red (blue) nodes correspond to

low (high) status players. Each player has two neighbors with whom they

can share information about the location of the gold mine and is randomly

assigned to a node in the network.

3.3 Network Structure

In contrast to our model which treats the network formation as an endoge-

nous process, the experiment simply uses a �xed network structure which

corresponds to the model prediction when the maximum degree isd = 2.

The network will e�ectively have three disconnected triangles, one with the

high status and two with the low status players. Figure 2 illustrates the

network structure. The choice of two disconnected triangles among the low

status players rather than a single connected hexagon is made intentionally

to �rst avoid leakage or interference between pairs of users not directly con-

nected and second to make comparison with the high status network and

inference using resampling easier. Players upon arrival to the experiment

platform will be randomly assigned to a node in the network, which will also

determine their status.

3.4 Game Setup

The game has 12 rounds, however the instructions on the game does not

specify the number of rounds, as such the players do know when the game

will end. Each round has the following 3 stages.
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Figure 3: The snapshot of the �rst (sharing) stage in round 7. The player

pro�le is shown on the left and the neighbors list is on the right. In this case,

the player and their neighbors are all from the low status group with a red

background. High status pro�les have a blue background. In this stage, the

player has received the location of the gold and is sharing it with the python.

1. Sharing Stage: In the �rst stage, the experiment platform reveals

10 random squares of the map to each player. If a player is assigned

to receive the location of the gold, it will be revealed among these 10

squares. Each player then decides which squares to share or not share

with which of the two neighbors. This decision is probably informed

by the interactions with the neighbor in the previous rounds. Figure 3

shows a screen snapshot of the sharing stage.

2. Digging Stage: In the second stage, the experiment platform reveals

the squares that were shared by the neighbors. If the gold mine was

originally revealed to the player or one of their neighbors shared its

location with them, the player can dig the location and is guaranteed to

16



Figure 4: The snapshot of the second (digging) stage in round 7. This stage

immediately follows the snapshot shown in Figure 3. The squares that were

shared by one of the neighbors (python) are highlighted in green by hovering

over the neighbor. The player originally received the location of the mine

and has selected its square to dig.

receive some reward. Otherwise, the player can choose another square

as a best guess to dig. Figure 4, shows a screen snapshot of the digging

stage.

3. Summary Stage: In the third stage, the full map is revealed and if

the player successfully dug at a gold mine, they will receive information

about their reward, which depends on how many other players were

also digging. This stage also summarizes the sharing decision of all

neighbors. In particular, it shows the player which squares (potentially

including the gold mine) the neighbors decided to share and which ones

they decided to hide. Figure 5 shows a screen snapshot of the summary
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Figure 5: The snapshot of the third (summary) stage in round 7. This stage

immediately follows the snapshot shown in �gure 4. By hovering over each

neighbor, the player can see their sharing decision in this round. The squares

that python decided to share are highlighted in green and the squares they

decided to hide are highlighted in red. Since the player dug at a mine and

there were 3 other players digging too, the player receives $0.6 ($2.4/4).

stage.

4 Data

We collected data for 38 games that successfully �nished with all players

present. Games were advertised on MTurk in batches of maximum 3 games

so that no more than 30 players were connected to the platform at the same

time. MTurk workers who signed up for a batch received an email 15 minutes

before the game started and those who joined the platform were randomly

assigned to a position in the network. Each game took about 15 minutes and
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Figure 6: Distribution of player gender, age and education by treatment

(status) condition. In the education plot, HS, Bach, Grad refer to High

school, Bachelor's degree and post-graduate degree respectively.

MTurk workers were not allowed to play more than once. Data collection

took a period of 2 weeks from 2021-03-22 to 2021-04-05.

Out of the 38 games, there were 10 games in which players of a single type

missed digging the gold more than once even if they knew its location. This

can happen either due to connection problems or player inattentiveness. As

we also mentioned in the pre-registration document, analyzing such games

and comparing them against a null model is challenging, because not only

group level rewards will be lower due to the missed opportunities but also

inattentiveness might a�ect cooperation. As outlined in the exclusion criteria

of our pre-registration document, the �nal data excluded these games and had

28 games with 252 unique players. Comparing the treatment groups (high

or low) along three basic demographic variables does not reveal a signi�cant

di�erence. The p-value of the two-sample chi-square test on gender and

education level between the high and low treatment groups are 0.69 and 0.79

respectively. Similarly, the p-value of the two-sample Kolmogorov-Smirnov

test on age is 0.35. Figure 6 compares the distribution of these variables

among participants across the status treatment.
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5 Methods

Our main hypothesis is that high status players share the location of gold

more frequently than low status players. This leads to high status players

as a group receiving a larger share of total available gold than would be

expected without network sharing, which would have been about 50% given

that exactly one high-status and one low-status player receive the information

in each round. Similarly, the mean reward or mean fraction of total rewards

that goes to a high type player is larger than the value predicted without

network e�ects. These hypothesis involve quantities at the individual and

group levels. Hence, we compare the experimental data against a null model

in two ways. In the �rst analysis, described in section 5.2, the dependent

variable is the within-status dyadic sharing rate and the null model indicates

no di�erence in sharing rate by status treatment. In the second analysis in

section 5.3, the dependent variable is the fraction of rewards to each status

and the null model predicts equal distribution of rewards to the status groups.

5.1 Notation

In what follows, we letI gold(g; r; i ) represent an indicator variable which takes

the value of 1 when the gold is revealed to playeri in round r of gameg.

Similarly, I shared (g; r; i; j ) is a binary indicator that takes the value of 1 when

player i shares the gold with playerj in round r of gameg. Ug;i is the utility

or total reward of player i at the end of gameg. G corresponds to the set

of all games,Hg is a set that contains the 6 directional edges in the form

of (i; j ) between high status players gameg and Lg contains the set of 12

directional edges between low status players. Given the notations above, we

can express the average sharing rate from playeri to player j in gameg as
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followed.

Sg;i;j =

P
r 2f 1;:::;12g I shared (g; r; i; j )
P

r 2f 1;:::;12g I gold(g; r; i )
(2)

Similarly, we can de�ne the average sharing rate within each status group as

followed.

Sg;H =

P
(i;j )2 H g

Sg;i;j

jHgj
(3)

Sg;L =

P
(i;j )2 L g

Sg;i;j

jLgj
(4)

5.2 Dyadic Sharing Rate

Our main hypothesis examines the di�erence in sharing rate, orP(sharing

| gold is revealed), at the level of each dyad across status groups. In this

analysis, a unit of observation is the sharing rate on a single directed edge

over all 12 rounds orSg;i;j . Since sharing is directional, there will be two

observations for each dyad corresponding to each direction. We compare the

sharing-rate of high-status and low-status players in two ways.

Fisher Exact Test: The sharp null here implies that status has no e�ect

at all on sharing decisions of a player. Since a unit of observation involves

each directed edge, we can use the di�erence in the mean sharing rate of high

status group and low status group as the test statistic.

t =

P
g2 G Sg;H

jGj
�

P
g2 G Sg;L

jGj
(5)

The test statistic is e�ectively the estimated average treatment e�ect on

the sharing rate along a dyad where the treatment is the assignment of the

dyad to high or low status. Given the sharp null, we can conduct the usual

21



Fisher randomization technique to compute the exact p-value of our observed

statistic. However, it is important to note that not all randomizations are

valid. A valid randomization should generate three disconnected components

with one as a high status clique similar to �gure 2. But more importantly,

the randomization must maintain the same neighbors for each player because

the sharing rate of each player is dependent on sharing decisions of their

neighbors. If we had allowed randomizations that create di�erent pairings of

players than the actual realized network, each player would be exposed to a

di�erent neighbor history which could have changed their sharing rate. In

other words, the sharp null does not imply the sharing rate is independent of

neighbor actions, rather it only assumes independence from status labeling.

Hence, we are comparing against aconditional sharp null: conditioned on the

realized assignment of players to network positions, the status has no e�ect

on sharing rate.

There are only 3 randomizations per game that keep positions and neigh-

bors in the network �xed but �ip the status. In each randomization, the

status of one of the three triads in �gure 2 is set to be high and the remain-

ing two triads are low status. Given 28 collected games, there are328 possible

permutations, so we use sampling from these permutations to generate the

distribution of the statistic under the sharp null.

Average Treatment E�ect: We could also test the e�ect of status against

the Neyman null of zero average treatment e�ect or ATE. The challenge is

that the Stable Unit Treatment Value Assumption or SUTVA is violated:

the outcome of an edge not only depends on the status assignment of the

players on each side of the edge but also on the assignment of their neighbors

in the triad. This implies that there is potential spillover from one dyad to
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another. However, we are not interested in the e�ect of individual status

assignments, rather the status assignment in groups. We can denote the

potential outcome of a dyad asS(t1; t2; t3) wheret1, t2 and t3 correspond to

the status or type assignment of the three players in the triad that contains

the dyad and S(t1; t2; t3) is the sharing rate from player with statust1 to

player with status t2. We are not interested in causal quantities such as

E[S(H; L; L ) � S(L; L; L )], instead we are after a causal quantity such as

E[S(H; H; H ) � S(L; L; L )]. This is because our theory is about how groups

of high status cooperate di�erently than low status and not about the e�ect

of individual status changes.

Using E[S(H; H; H ) � S(L; L; L )] as the estimand addresses the SUTVA

violation within each triad as the treatment now explicitly accounts for the

full triad assignment. Nevertheless, there is still the possibility of spillovers

from disconnected triads since there is information �ow between triads when

sharing the common resource. Therefore, we expand the potential outcome

function on a dyad toS(t1; t2; t3; t4; t5; t6; t7; t8; t9) where the �rst 3 arguments

correspond to the status assignment in the triad that contains the dyad, the

remaining 6 arguments correspond to assignment of players in other triads

and S(:) is the sharing rate from player with statust1 to player with status t2.

With this de�nition, the main estimand incorporates the status assignment

of players in other triads as shown below.

ATE = E[S(H; H; H; L; L; L; L; L; L ) � S(L; L; L; L; L; L; H; H; H )] (6)

One could use a di�erence-in-means estimator similar to the one shown

in equation 2 for the ATE above. If we were to assume sharing decisions of

players are independent of each other, we could conduct inference using a

two independent sample t-test with unequal variances. However, one might
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expect that the potential outcomes in triads might be correlated. For exam-

ple, it is possible that players engage in tit-for-tat or grim trigger strategies,

in which case their sharing rates might be correlated. In the terminology of

linear regression, we would say that the error terms are correlated in triads.

Therefore, we need to account for this clustering in our inference. We could

account for this clustering by de�ning each triad in each game as a cluster (75

total clusters) and use cluster-robust standard errors. But since there is in-

formation �ow from one cluster to another during the game summary stages,

one needs to be conservative and use the games or the coarsest level possible

as the clusters. The only concern with this choice is the small number of

clusters (28) which might adversely a�ect our standard error estimate. How-

ever simulations with 28 games that use a probabilistic grim trigger strategy

among players of each triad suggest that the inference with cluster robust

standard errors and the game as the clustering unit has a correct type I er-

ror (type I error = 0.03 when � =0.05) whereas the regular standard error

without clustering greatly over-rejects when the null is true (type I error =

0.12 when� =0.05).

In summary to conduct inference on the ATE in equation 6, we use the

following regression model with cluster robust standard errors and each game

as a cluster.

Sg;i;j = � 0 + � 1tg;i;j + 
 X g + � g;i;j (7)

whereSg;i;j as de�ned in equation 2 is the sharing rate in the dyad from player

i to player j in gameg, tg;i;j 2 f H; L g is the randomized status treatment on

the tiad that includes i and j and X g 's are the game �xed e�ects.
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5.3 Fraction of Group Rewards

Any di�erence in sharing rates will directly lead to unequal shares of total

rewards collected by the status groups. We conduct tests to evaluate whether

the high status group receives a larger fraction of the total gold than would

be expected under the null model. This analysis alleviates any concerns of

dependence within games when using sharing rates as the dependent variable

since the unit of analysis is a game which is clearly independent of other units.

Null Model: We refer to the model of each player acting individually

without any network e�ects as the null model. Under the null model, utility

solely derives from the exogenous individual ability, captured by status in

our experiment, and does not have a network component. Without network

e�ects, each group will receive about half of the total gold available, but not

exactly 50% since players can still guess the location of the gold if it is not

revealed to them. In particular, the low type will receive slightly more than

50% since there are 5 players guessing the location in each round as opposed

to 2 in the case of high type. If we denote a binomial process byBinom (n; p)

wheren corresponds to the number of trials andp is the success probability,

then the expected fraction of total gold earned by each group and their ratio

under the null model, denoted by� H , � L and � , take the binomial forms

below.

� H = E
� 1 + Binom (2; 1=90)
2 + Binom (2; 1=90) + Binom (5; 1=90)

�
= 0:498 (8)

� L = E
� 1 + Binom (5; 1=90)
2 + Binom (2; 1=90) + Binom (5; 1=90)

�
= 0:514 (9)

� = E
� 1 + Binom (2; 1=90)
1 + Binom (5; 1=90)

�
= 0:994 (10)
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whereBinom (2; 1=90) corresponds to a binomial process in which 2 high type

players without the gold guess its location among the 90 unrevealed squares

and similarly Binom (5; 1=90) corresponds to the same process for the 5 low

type players without the gold.

Non-Parametric Test: This is be our primary analysis at the game-level.

The analysis involves the following two measures.

1. Mean fraction of total reward collected by the high status group.

b� H =
X

g2 G

�
P

i 2 H g
Ug;i

P
i 2 H g [ L g

Ug;i

�
=jGj (11)

2. Mean ratio of total reward collected by the high status group over the

low status group.

b� =
X

g2 G

�
P

i 2 H g
Ug;i

P
i 2 L g

Ug;i

�
=jGj (12)

We compare the above measures against their corresponding values from the

null model in equations 8 and 10 using the one-sample Wilcoxon signed rank

test. With 28 games, we have
� 56

28

�
possible permutations so we need to appeal

to its normal approximation to compute the p-value. The null hypothesis in

Wilcoxon signed rank test assumes symmetry around the median of paired

di�erences. Since this might not be appropriate, we also report the results

from the weaker sign test whose null hypothesis simply assumes the median

is a given value.

Parametric Test: We compare the above measures,b� H and b� , against the

null model predictions using the one-sample t-test. This will be a secondary

game-level analysis since we don't expect that the distribution ofb� H and
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Figure 7: The distribution of the test statistic with the randomization infer-

ence versus the observed statistic.

b� would be close to their asymptotic normal under the null given only 28

games. In fact, our simulations suggest that this test has a higher type I

error rate than the signi�cance level with n = 28 (e.g. type I error=0.018

when � =0.01).

6 Results

We present the results of di�erent analysis methods in the same order as

described in section 5.

6.1 Dyadic Sharing Rate

Fisher Exact Test: Figure 7 shows the result of this analysis. The test

statistic, in equation 5, is e�ectively the average treatment e�ect at the

dyad level. The statistic is positive and signi�cant (two-tailed p = 0:0067

with 50000 simulated random assignments) indicating that the high status

treatment has a higher sharing rate than the low status treatment.
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Figure 8: Probability of sharing conditioned on receiving the gold per round

(left) and over all rounds (right) by status of players. Bars in the left plot cor-

respond to standard error while they correspond to 95% con�dence interval

on the right

Average Treatment E�ect: Figure 8 compares the mean sharing rate

along high status and low status dyads as de�ned in equations 3 and 4. The

results clearly indicate that the high status players share the rivalrous re-

source with each other at a signi�cantly higher rate in all rounds and overall.

This suggests that the rivalry in resource sharing promotes strategic behav-

ior, especially among the low status players. This can be further validated by

examining the number of non-gold squares shared by low status players. The

game revealed 10 squares to each player in each round, one of which could

be a gold mine, and the players could share any number of these squares

with any of their neighbors. Sharing non-gold squares might still be a form

of cooperation since it helps the other players to �nd the gold mine through

the process of elimination. Figure 9 compares the mean number of non-gold

squares shared along high status and low status dyads. As opposed to the re-

sults for sharing the gold mine itself, we observe that low status players share

more squares on average than high status players. This �nding suggests that

28



Figure 9: Mean number of non-gold squared shared per round (left) and over

all rounds (right) by status of players. Bars in the left plot correspond to

standard error while they correspond to 95% con�dence interval on the right

low status players act very strategically as they tend to keep the rivalrous

resource exclusively, but nevertheless share other valuable information with

their neighbors hoping to keep a cooperative relationship in the future.

Table 1 shows the formal inference results on the average treatment e�ect.

The model explained in section 5.2 with cluster robust standard errors at the

game level is included in the second column. According to this model, random

assignment to a high status triad causes the sharing rate to increase by about

19%. The cluster robust p-values from models with and without game �xed

e�ects (columns 2 and 3) arep = 0:011and p = 0:009respectively.

6.2 Fraction of Group Rewards

In this section, we present the results of hypothesis tests that compare the

observed fraction of rewards earned at the end of the game by the high status

group (b� H from equation 11) and the ratio of high and low status rewards (b�

from equation 12) versus their respective null model predictions in equations
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Table 1: Estimated Average Treatment E�ect under di�erent models. First

column includes the game �xed e�ects but uses regular standard errors. Sec-

ond column includes game �xed e�ects along with cluster robust standard

errors. Third column does not include the �xed e�ects but uses cluster robust

standard errors. Fixed e�ect estimates are not shown.

Dependent variable:

Sharing Rate

(1) (2) (3)

High Status 0.190��� 0.190�� 0.190���

(0.038) (0.074) (0.072)

Constant 0.187�� 0.187��� 0.393���

(0.095) (0.025) (0.040)

Cluster Robust SE No Yes Yes
Game Fixed E�ects Yes Yes No
Observations 504 504 504
R2 0.216 0.216 0.042
Adjusted R2 0.170 0.170 0.040
Residual Std. Error 0.400 (df = 475) 0.400 (df = 475) 0.430 (df = 502)

Note: � p< 0.1; �� p< 0.05; ��� p< 0.01

8 and 10.

Non-Parametric Test: Given the small sample size (n = 28), non-parametric

tests that don't make any assumption on the distribution of the test statistic

seem to be more appropriate. The null model in the following non-parametric

tests assumes that the median of the distribution, from which we observeb� H

values, is equal to� H . The one-sample Wilcoxon signed rank test rejects the
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Figure 10: Share of each group from total gold distributed over the game

versus their expected share (left). The ratio of high status group versus

low status group total gold distributed over the game compared with the

expected ratio (right). Bars correspond to 95% con�dence interval.

null model with p = 0:021 and (0:507; 0:580) as the 95% con�dence interval

for the fraction of rewards collected by the high group. The weaker sign test

also rejects the null model withp = 0:013.

We could conduct the same tests using a di�erent statistic and compare

the observed ratio of rewardsb� against its null model prediction � . The

one-sample Wilcoxon signed rank test rejects this null model withp = 0:010

and (1:064; 1:426)as the 95% con�dence interval on the true ratio of rewards

� . The sign test also rejects the null withp = 0:012. The direction of the

observed statistic relative to the null in all the tests above indicate that

the high status group collects a larger share of the rivalrous resource than

expected under the null model without network e�ects.

Parametric Test: Figure 10 compares the mean fraction of total rewards

collected by each group and their ratio against the null model predictions in

equations 8, 9 and 10. The results indicate that the high status assignment
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